Impact parameters resolutions in $\sqrt{s}=13$ TeV pp interactions measured with ATLAS at the LHC

- Project supervisor: Yuri A. Kulchitsky
- Student: Zuzana Reščáková
• Project supervisor: **Yuri A. Kulchitsky**

• The Laboratory of Nuclear problems

• Student: **Zuzana Reščáková**

Pavol Jozef Šafárik University in Košice, Slovakia
Nuclear and Subnuclear Physics
ATLAS detector

- is a particle physics experiment for pp, pA and AA collisions investigated for energies 0.9 - 14 TeV at the Large Hadron Collider at CERN
- covers almost the whole solid angle around the collision point with layers of tracking detectors, calorimeters and muon chambers
- for our measurements the tracking devices and the trigger system are of particular importance
Introduction

- The distributions are corrected for detector effects and are presented as inclusive-inelastic distributions, in a well-defined fiducial region.
- These distributions are compared to particle level Monte Carlo (MC) predictions.
Motivation

- The motivation of these study are analysis of transverse, d_0, and longitudinal, $z_0\left(sin\Theta\right)$, Impact Parameters (IP) distributions within the Inner Detector for Selected, Primaries and Secondary (electrons and non-electrons) tracks with the aim of characterizing the resolution, alignment and material budget in dependent from η, p_T and n_{sel}

- The comparison of Monte-Carlo predictions for IP distributions with Experimental results are good source of information for verification of ATLAS Geo Model for Inner Detector.

- Impact parameters are one of the most important criterion for reconstructed track selection.
Impact parameters d_0 and $z_0(\sin \Theta)$

d_0 - the signed distance to the z-axis

$z_0(\sin \Theta)$ - the z-coordinate of the track at the point of closest approach to the global z-axis

Figure 6.4: Illustration of the perigee parameters of a track in the transverse plane (left) and RZ-plane (right), as defined in the global ATLAS tracking frame.
Track distribution for d_0 parameter

Run 2 for pp at 13 TeV

Run 1 for pp 0.9 – 8 TeV
Convolution of Gaussian with Gaussian for $\sigma(d_0)$ and $\sigma(z_0 \sin \Theta)$

$$P_{IP \otimes BS} = \frac{C}{\sqrt{2\pi(\sigma_{IP}^2 + \sigma_{BS}^2)}} e^{- \frac{(x-(\mu_{IP}+\mu_{BS}))^2}{2(\sigma_{IP}^2 + \sigma_{BS}^2)}}$$

- The beam spot resolution for $\sigma_{BS}(d_0) = \sigma_{BS}$
- The beam spot resolution for $\sigma_{BS}(z_0) = \sigma_{BS} \cotg \Theta$
- The beam spot resolution for $\sigma_{BS}(z_0 \sin \Theta) = \sigma_{BS} \cos \Theta$
- C – normalization parameter
- σ_{IP} and μ_{IP} - resolution and average of the IP
- σ_{BS} and μ_{BS} - resolution and average for beam spot
Resolution in dependence from η for d_0 at 13 TeV

Reprocessing. Average of IP d_0

Deconvolution. Resolution of IP d_0
Resolution in dependence from p_T for d_0 at 13 TeV.

Reprocessing. Average of IP d0

Deconvolution. Resolution of IP d0
Charged-particle multiplicities at $\sqrt{s}=13$ TeV

- Results of our investigation for impact parameters are included in these distributions.
- Absolutely new energy
Conclusion

- Impact parameters resolution are very important for correct track selection.
- IP resolution is twice better for Run2 than for Run1 geometry. It means that background from secondary tracks are smaller.
- The IP d0 and z0 sinΘ resolutions for experimental data are in good agreement with MC prediction.
- The IP d0 and z0 sinΘ averages for experimental data are in good agreement with MC predictions.
Thank you for your attention
BACKUP SLIDES
Selection of tracks

Selection cuts at 13 TeV

- Select only well-defined tracks,
- Select a primary vertex to reduce error in IP.

<table>
<thead>
<tr>
<th>Cut parameter</th>
<th>Cut value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T</td>
<td>$> 0.5 \text{ GeV/c}$</td>
</tr>
<tr>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>Number of Silicon hits</td>
<td>≥ 6</td>
</tr>
<tr>
<td>Number of Pixel hits</td>
<td>≥ 1</td>
</tr>
<tr>
<td>Number of b-layer hits</td>
<td>> 0</td>
</tr>
<tr>
<td>Number of tracks in PV</td>
<td>> 1</td>
</tr>
<tr>
<td>Number of PVs</td>
<td>$= 1$</td>
</tr>
<tr>
<td>Number tracks in PV</td>
<td>≥ 2</td>
</tr>
<tr>
<td>Track Probability for $p_T>10 \text{ GeV}$</td>
<td>≥ 0.01</td>
</tr>
</tbody>
</table>
Track distribution for $z_0(\sin \Theta)$ parameter

Run 2

Run 1
Resolution in dependence from n_{sel} for d_0

Reprocessing. Average of IP d0

Deconvolution. Resolution of IP d0

ATLAS Internal

- $\sqrt{s} = 13$ TeV
- $n_{sel} \geq 1$
- $p_T > 500$ MeV
- $|\eta| < 2.5$
Resolution in dependence from η for $z_0(s\sin\Theta)$

Reprocessing. Average of IP $z_0\sin\Theta$

Deconvolution. Resolution of IP $z_0\sin\Theta$
Resolution in dependence from p_T for $z_0(\sin\Theta)$

Reprocessing. Average of IP $z_0\sin\Theta$

Deconvolution. Resolution of IP $z_0\sin\Theta$
Resolution in dependence from n_{sel} for $z_0(\sin\Theta)$

Reprocessing. Average of IP $z_0\sin\Theta$:

- $\sqrt{s} = 13$ TeV
- $n_{sel} \geq 1$
- $p_T > 500$ MeV
- $|\eta| < 2.5$

Deconvolution. Resolution of IP $z_0\sin\Theta$:

- $\sqrt{s} = 13$ TeV
- $n_{sel} \geq 1$
- $p_T > 500$ MeV
- $|\eta| < 2.5$