Ion Beam Analysis

Lukhwa Rendani
Physics Department University of the Western Cape, South Africa

Nolufundo Sintwa
University of Fort Hare, South Africa

Sinazo Mselana
University of Fort Hare, South Africa

Supervised by A.P. Kobzev
Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
Aim

• To determine the elemental composition of thin films on the surface solid Target
• Enables technology for thin film scientists and engineer
• Possible applications are:
 – Microelectronics
 – Forensic etc.
Part 1: Accelerator & PIXE

Van de Graaff Accelerator

Energy gain = qV
Maximum Voltage
≈ 25 MV

9/24/2014
Parameters of EG-5 Accelerator

- Energy Region: 0.9-3.5 MeV
- Beam intensity for H\(^+\): 30\(\mu\)A
- Beam intensity for He\(^+\): 10\(\mu\)A
- Energy Spread < 500 eV
- Number of beam lines: 6
PIXE- Particle Induced X-ray Emission Method

• Proton beams are mainly used
 – Ionization of atom
 – Si(Li) Detector
 – Energy resolution about 150eV
Moseley’s law

Moseley law

\[\sqrt{\frac{\nu}{R_c}} = \frac{Z - S_n}{n} \]

- \(Rc \) – Rydberg’s constant
- \(Z \) – atomic number
- \(Sn \) – screening constant
- \(n \) – main quantum number
- \(\nu \) – frequency of X-ray quantum
PIXE Results

Sample N1
$E_p = 2.005$ MeV

Energy, keV

X-Ray yield

Si, S, Cl, K, Ca, Ba, Fe, Mn, Cu, Zn, As, Sr, Zr
Aerosol analysis by PIXE & RBS

<table>
<thead>
<tr>
<th>Element</th>
<th>Concen. At. %</th>
<th>Method</th>
<th>Element</th>
<th>Concen. At. %</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>41</td>
<td>RBS</td>
<td>K</td>
<td>0.1</td>
<td>PIXE</td>
</tr>
<tr>
<td>N</td>
<td>20.5</td>
<td>RBS</td>
<td>Ca</td>
<td>0.53</td>
<td>RBS</td>
</tr>
<tr>
<td>O</td>
<td>28</td>
<td>RBS</td>
<td>Mn</td>
<td>0.007</td>
<td>PIXE</td>
</tr>
<tr>
<td>F</td>
<td>2.6</td>
<td>RBS</td>
<td>Fe</td>
<td>0.14</td>
<td>RBS</td>
</tr>
<tr>
<td>Na</td>
<td>2.5</td>
<td>RBS</td>
<td>Cu</td>
<td>0.002</td>
<td>PIXE</td>
</tr>
<tr>
<td>Mg</td>
<td>1.3</td>
<td>RBS</td>
<td>Zn</td>
<td>0.01</td>
<td>PIXE</td>
</tr>
<tr>
<td>Al</td>
<td>1.3</td>
<td>RBS</td>
<td>As</td>
<td>0.001</td>
<td>PIXE</td>
</tr>
<tr>
<td>Si</td>
<td>1.8</td>
<td>PIXE</td>
<td>Sr</td>
<td>0.0006</td>
<td>PIXE</td>
</tr>
<tr>
<td>S</td>
<td>0.2</td>
<td>RBS</td>
<td>Zr</td>
<td>0.005</td>
<td>PIXE</td>
</tr>
<tr>
<td>Cl</td>
<td>0.01</td>
<td>PIXE</td>
<td>Ba</td>
<td>0.01</td>
<td>PIXE</td>
</tr>
</tbody>
</table>
Nolufundo Sintwa

University of Fort Hare
Part 2: RBS-Rutherford Backscattering Spectrometry Method

- Near-surface layer analysis of solids
- Elemental composition
- Depth profiling of individual elements
- Very sensitive for heavy elements
- Less sensitive for light elements
Experimental chamber
RBS

• Kinematic Factor

\[K = \frac{M_1^2}{(M_1 + M_2)^2} \left\{ \cos \theta \pm \left[\left(\frac{M_2}{M_1} \right)^2 - \sin^2 \theta \right]^{1/2} \right\}^{1/2} \]

• Cross-section

\[\sigma_i = \left(\frac{Z_1 Z_i e^2}{2 E \sin^2 \theta} \right)^2 \left\{ \cos \theta + \left[1 - \left(\frac{M_1}{M_i} \right)^2 \sin^2 \theta \right]^{1/2} \right\}^{1/2} \left[1 - \left(\frac{M_1}{M_i} \right)^2 \sin^2 \theta \right]^{1/2} \]
Program used for the analysis of experimental results was SIMNRA

Experimental condition

- Calibration
 - Offset=27.95keV
 - Energy/channel=2.185

- Number of particles
 - 1.56E11

- Thickness
 - Nb =161nm
Rendani Lukhwa

University of the Western Cape
Part 3: ERD - Elastic Recoil Detection

- Forward Recoil
- Good for light elements (H, D)
- Al foil
RBS

Counts vs. channel

- Experimental curve
- Simulated curve

Elements:

- **C**: 41% (Experimental), 45% (Simulated)
- **H**: 19% (Experimental), 13% (Experimental), 13.5% (Simulated), 19% (Simulated)
- **Si**: 40% (Experimental), 42% (Simulated), 40% (Simulated)
Conclusion

• Three methods were used in order to obtain information about elements depth contents for different elements from hydrogen to barium

• Sensitivity of method for heavy elements less than 0.001 atomic %
Acknowledgements

• Dr Mirosław Kulik
Thanks for your attention

From left to right : Dr A.P Kobzev, Sintwa Nolufundo, Luhkwa Rendani, Sinazo Mselana and Dr Mirosław Kulik